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Linear Programming Key Concepts

Linear programming: 

The problem of optimizing (minimizing or maximizing) a linear function

(objective function) subject to linear inequality constraints

Example of a linear programming problem (minimization problem):

Standard form of a minimization linear program:

All constraints are of the kind 

All variables are constrained to be nonnegative
All linear programming problems can be converted to standard form.
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Linear Programming Key Concepts

Any setting for the variables that satisfies all the constraints of the 
corresponding linear programming problem is said to be a feasible 
solution.

A linear programming problem is said to be feasible if the constraint set 
is not empty. Otherwise is said to be infeasible.  

A feasible linear programming problem is said to be unbounded if the 
objective function can assume arbitrarily large positive or negative 
values at feasible solutions; otherwise is said to be bounded.

Possibilities for a linear program: bounded feasible, unbounded feasible, 
infeasible



Certificates for an LP Decision Problem

Let       denote the optimum value of the following linear program: 

“Is        at most ?”

a YES certificate for this question : a feasible solution whose 
objective function value is at most                   this problem is in NP

Any YES certificate to this question provides an upper bound on 

Can we provide a NO certificate for this question so that this 
problem is in                        ?            Yes. The problem is well-
characterized
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Placing Lower Bounds on the Objective Function 
Optimal Value 

By the first constraint since:

A better lower bound can be obtained by taking the sum of the two 
constraints :

The Idea behind the Process of placing lower bounds :find suitable 
nonnegative multipliers for the constraints so that in their sum , the 
coefficient of each      is dominated by the correspondent coefficient in 
the objective function. The right hand side of the sum is a lower bound 
on 

The coefficients are chosen so that the lower bound that is obtained is 
large as possible. 
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LP-Duality

The problem of finding the coefficients that give the best (highest) 
lower bound can be formulated as a linear program:

primal program                                      dual program

The original problem is called the Primal  Problem and the other is called 
the  Dual  Problem
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LP-Duality

Associated with every linear program there is another program called a 
“dual” program

There is a systematic way of obtaining the dual of every linear program

If the primal program is a minimization program then the dual 
program is a maximization program

The dual of the dual is the primal program itself



Obtaining The Dual of a Linear Program

primal program                                          dual program
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LP Duality Theorem

By construction, every feasible solution to the dual program gives a 
lower bound on the optimum value of the primal

Every feasible solution to the primal program gives an upper bound on 
the optimal value of the dual

if we can find solutions for the primal and the dual program with 
matching objective function values then both solutions must be 

optimal 



LP Duality Theorem

LP-duality theorem :

The primal program has finite optimum iff its dual has finite optimum.

Moreover , if                          and                      are optimal solutions for

the primal and the dual programs respectively, then 

The LP-duality theorem is a min-max relation since one program is a 
minimization  problem and the other is a maximization problem.

A corollary of this theorem is that LP is well-characterized
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Weak Duality Theorem

Weak duality theorem: 

If                           and                           are feasible solutions for the primal and

the dual program respectively then: 

Proof:

Since        is dual feasible and          are nonnegative :

Since        is primal  feasible and          are nonnegative :

The theorem follows by observing that:
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Complementary Slackness Conditions 

Let x and y be primal and dual solutions, respectively. Then x and y are

both optimal iff all of the following conditions are satisfied:

Primal complementary slackness conditions: 

(So that                                                      ) 

Dual complementary slackness conditions:

(So that                                                      )
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MAXFLOW Problem 

The MAXFLOW problem:

Given a directed graph              with two distinguished nodes source    and

sink    and positive capacities                    , find the maximum amount of

flow that can be sent from s to t subject to:

Capacity constraint: for each arc    , the flow sent through    is bounded 
by its capacity

Flow conservation: for each node     other that s and t  the total flow 
into    should equal the total flow out of  
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The MAXFLOW Problem as a Linear Program

Introduction of  a fictitious arc of infinite capacity from t to s                conversion of the 
flow to a circulation                  we can require flow conservation at s and t as well 
The objective is to maximize the flow on arc from t to s.
We formulate the maximum flow problem as follows:

capacity constraints                  

flow conservation  
constraints

denotes the amount of flow sent through arc 

The trick to  get the MAXFLOW problem formulation as a linear program in standard 
form:
If the second inequality holds at each node then in fact it must be satisfied with equality 
at each node 
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LP-Duality Theory and max-flow min-cut Theorem

S-t cut: defined by  a partition of nodes into two sets     and       so that          

and             . It consists of the set of arcs going from       to 

The capacity of a s-t cut, denoted                 is defined to be the sum 
of capacities of the arcs in the cut

The capacity of any s-t cut is an upper bound on any feasible flow

If the capacity of an s-t cut, say             equals the value of a feasible 
flow, then               must be a minimum s-t cut and the flow must be a 
maximum flow in the graph.

The max-flow min-cut theorem proves that it is always possible to find

flow and an s-t cut so that equality holds.
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The Dual of MAXFLOW Problem

Introduction of the variables

:distance labels on arcs

:potentials on nodes

The dual program:                                     The dual program as integer:           

program
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The Dual of MAXFLOW Problem

This solution defines a cut          ,  where       is the set of nodes with potential 1  
and       is the set of nodes with potential 0.

Consider an arc            with             and

The distance label for each of the remaining arcs can be either 0 or 1 without 
violating the first constraint               set to 0 in order to minimize the objective 
function

the objective function value must be equal to the capacity of the cut              and          

must be a minimum cut                 the integer program is a formulation 
of the min-cut problem!
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Relaxation of a Linear Program 

What about the following dual program?

The former program can be viewed as a relaxation of the integer 
program where:

The constraints              and              are redundant
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Fractional s-t cuts 

Consider an s-t cut C in G.
Any path from s to t in G contains at least one edge of C.
Thus any feasible solution to the dual problem can be interpreted as a 
fractional s-t cut : the distance labels it assigns to arcs satisfy the 
property that on any path from s to t the distance labels add up to at 
least 1.
Consider an s-t path:
Sum the potential differences on the endpoints of arcs on this path: 

The sum of the distance labels on the arcs must add up to 

We define the capacity of this fractional s-t cut to be the dual objective 
function value achieved by it
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Max-flow min-cut Theorem

the best fractional s-t cut  could have lower capacity than the  best integral cut? NO

Consider the polyhedron defining the set of feasible solutions to the dual program
A feasible solution is an extreme point solution if it cannot be expressed as  a 
convex combination of two feasible solutions
For any objective function there is an extreme point solution that is optimal
It can be proven that each extreme point solution of the polyhedron for the 
integer dual program is integral
Thus the dual program always has an integral optimal solution
By the  LP- duality theorem  maximum flow in G must equal capacity of a minimum 
fractional s-t cut.
A minimum fractional s-t cut equals the capacity of an s-t cut 

Max-flow min cut theorem

Most min-max relations arise from LP-relaxations that always have integral optimal
solutions



Two Fundamental Algorithm Design Techniques

Why linear programming is so useful in approximation algorithms?
Many combinatorial problems can be stated as integer programs. Once this is done, 

the linear relaxation of this program provides a natural way of lower bounding 
the cost of the optimal solution. 

A feasible solution to the relaxed problem can be thought as a fractional solution to 
the original problem.

In the case of an NP-hard problem we cannot expect the polyhedron defining the set of
feasible solutions to have integer vertices            we look for a near optimal integral 
solution 

There are two basic techniques for obtaining approximation algorithms using linear 
programming:
LP-rounding: Solve the linear program            convert the fractional solution 
obtained into an integral solution. The approximation guarantee is established by 
comparing the cost of the integral and fractional solutions.
Primal-dual schema: an integral solution to the primal program and a feasible 
solution to the dual are constructed iteratively. The approximation guarantee is 
established by comparing the cost of the two solutions.

Is the primal-dual schema inferior to LP-rounding?



Integrality Gap of an LP-relaxation

Integrality gap of an LP- relaxation:

Given an LP-relaxation for a minimization problem Π, let              denote the cost

of an optimal fractional solution to instance I . 

Define the integrality gap  to be:

The integrality gap of the min-max relations which arise from LP-
relaxations  that always have integral solutions is 1. We call such an LP –
relaxation an exact LP-relaxation.
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A Comparison of the two Techniques

If the cost of the solution found by the algorithm is compared directly to the 
cost of an optimal fractional solution (or a feasible dual solution), the best 
approximation factor we can hope to prove is the integrality gap of 
the relaxation.
Both techniques have been successful in yielding algorithms having guarantees 
essentially equal to the integrality gap of the relaxation. 
Main difference between the techniques          running time

LP-Rounding:
needs to find an optimal solution to the linear programming relaxation
polynomial time if the relaxation has polynomially many constraints.
The running time is high

Primal-dual schema: 
better running times
it provides only an abroad outline of the algorithm
it leaves enough space to exploit the special combinatorial structure of 
individual problems
a combinatorial algorithm is more malleable than an algorithm that requires an 
LP-solver 



Dual fitting-based analysis

the method of dual fitting helps analyze combinatorial algorithms using LP-duality 
theory
We will present an analysis of the natural greedy algorithm for the set cover 
problem
The power of this approach will become apparent when we show the ease with 
which it extends to solving several generalizations of the set cover problem
Description of the dual-fitting method:

One shows that the primal integral solution found by the algorithm is fully paid by the 
dual computed.

By fully paid for we mean that the objective function value of the primal solution found 
is at most the objective function value of the dual computed, however the dual  is 
infeasible

Main step in the analysis: divide the dual by a suitable factor and show that the shrunk 
dual is feasible, i.e. it fits into the given instance

The shrunk dual is then a lower bound on OPT, and the factor is the approximation 
guarantee of the algorithm



SET COVER formulation as an integer program

Assign a variable      for each set            which is allowed 0/1 values. 

The constraint is that for each element            we want that at least one 
of the sets containing it to be picked.

LP-relaxation

(   )

The  upper bound on         is redundant because  the algorithm does not

select more than once the same set. Thus, by omitting           we don’t lose

any better solution and we get the program in a standard form
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Obtaining the dual of the SET COVER LP-relaxed program 

Introduce 
variables      

corresponding
to each 
element 

An intuitive way of thinking about the dual of SET COVER is that it is packing stuff 
into elements  trying to maximize the total amount packed
The constraint is that no set is overpacked
A set is said to be overpacked if the total amount packed into its elements exceeds 
the cost of the set.
Whenever the coefficients in the constraint matrix, objective function, and right-
hand side are all nonnegative , the minimization LP is called a covering LP and the 
maximization LP is called a packing LP.
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Simple example

A fractional set cover may be cheaper than the optimal 
integral set cover

Example:

Let                   and the specific sets be                 , and                 
each of unit cost.

Integral cover: picking two of the sets for a cost of 2

Fractional cover: picking each set to the extend of ½ gives a cost of 3/2.
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:the cost of an optimal fractional set

:the cost of an optimal integral set cover

The  cost of any feasible solution to the dual program is a lower bound on  

, and hence also on            . 
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Greedy SET COVER algorithm

The algorithm 2.2 defines dual variables price(e) for each element e
The cover picked by the algorithm is fully paid for by its dual solution
In general this dual solution is not feasible
If this dual is shrunk by a factor       no set is overpacked

For each element e define :
Algorithm 2.2 uses the dual feasible solution y as the lower bound on 
OPT         
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y is a feasible solution for the dual program 

Lemma: “the vector y is a feasible solution for the dual program”

Proof: (need to show that no set is overpacked by the solution y)

Consider a set           consisting of k elements 

Number the elements in the order in which they are covered by the 
algorithm, say 

Consider the iteration at which the algorithm covers the element :

s contains at least (k-i+1) uncovered elements

In this iteration s can cover       at an average cost of at most 

The algorithm chooses the most effective set in this iteration

Summing over all elements in S:
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Theorem: “the approximation guarantee of the greedy set cover             

algorithm is       “

Proof: 

The cost of the set cover picked is

nH
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Generalizations of SET COVER 

Set multicover: each element e needs to be covered a specific integer 
number of times. 

Objective: cover all the elements up to their coverage requirements at 
minimum cost. The cost of picking a set S, k times is k*c(S).

Multiset cover: a collection of multisets of U is given, which contain a 
specific number of copies of each element. Let                 denote the 
multiplicity of element e in set S. the instance satisfies the condition 
that the multiplicity of an element in a set is at most its coverage 
requirement

Covering integer programs: programs of the form 

where all entries in A, b ,c are nonnegative and x is required to be 
nonnegative and integral.
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Constrained SET MULTICOVER: dual fitting analysis

Constrained SET MULTICOVER: SET MULTICOVER with the 
additional constraint that each set can be picked at most once

Let              be the coverage requirement for each element

In the LP-relaxation problem the constraints               are no longer 
redundant so there are negative numbers in the constraint matrix and 
the problem is not a linear covering problem 
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Constrained SET MULTICOVER: dual fitting analysis

the additional constraints in the primal relaxed program lead to new 
variables for the dual 

The dual has also negative numbers in the constraint matrix and is not 
therefore a packing problem

A set      can be overpacked with the       ‘s.
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Constrained SET MULTICOVER: dual fitting analysis

Description of the greedy algorithm for SET MULTICOVER
An element     is alive if it occurs in fewer than         of the picked sets. 

The cost-effectiveness of a set is defined to be the average cost at which it covers 
alive elements

The algorithm is greedy and at each iteration it picks from amongst the currently 
unpicked sets the most cost-effective set.

The algorithm halts when there are no more alive elements

When a set is picked, its cost is distributed equally among the alive elements it 
covers as follows:  If s covers element e for the jth time  we set                       to the 
current cost-effectiveness of s.

For each element : 

At the end of the algorithm the dual variables are set as follows:

For each                  :

and for each             that is picked by the algorithm  :
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Constrained SET MULTICOVER: dual fitting analysis

Lemma:

“The multicover picked by the algorithm is fully paid by the dual solution        “

The cost of the sets picked by the algorithm is distributed among the 
covered elements 

The total cost of the multicover produced by the algorithm:

The objective function value of the dual solution           :

The lemma follows.

The dual solution              is in general infeasible but when scaled by a factor       
a feasible solution occurs :
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Constrained SET MULTICOVER: dual fitting analysis

Lemma :

“The pair             is a feasible solution for the dual program”

Consider a set               consisting of k elements

Number the elements in the order in which their requirements are fulfilled:   

Assume s is not picked by the algorithm

When the algorithm is about to cover the last copy of        ,  contains  at least 
k-i+1 alive elements, so:           

Since             :
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Constrained SET MULTICOVER: dual fitting analysis

Assume that s is picked by the algorithm. Before this happens              

elements of     are completely covered. Then : 

Where s covers the jth copy of     , for each 

But 

Finally consider elements     ,                         

When the last copy of       is being covered , s is not yet picked and covers at 
least k-i+1 alive elements.  Thus 

Therefore:
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Constrained SET MULTICOVER: dual fitting analysis

Theorem

“The greedy algorithm achieves an approximation guarantee of     for the 
constrained multicover problem”

By the two former lemmas the total cost of the multicover produced by 
the algorithm is :

Thus, the integrality gap of LP is bounded by 

nH
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